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This report discusses a cost effective procedure for spares provisioning of the
various components of an assembly that is assumed to fail if any one of the com-
ponents fails. The procedure not only provides a means for obtaining a given opera-
tional availability at minimum cost, but it is also applicable when a constraint is
placed upon the total cost of the spares for the components making up the assembly.

I. Introduction

An efficient method for spares provisioning of repair-
able equipment used in the Deep Space Network (DSN)
is given in Ref. 1. For simplification we call any such piece
of equipment a module. That method can be used to
determine the minimum number of spares necessary to
obtain a required operational availability which, in gen-
eral, is defined as the stationary probability that a system
is operating or operational at any given time and is some-
times referred to as the uptime ratio (UTR). The method
was applied to two types of situations. In the first case,
the goal was to provide a common pool of spares for n
identical, independently operated modules, n=1,2,3, - - -
situated within a single complex or DSS, and, in the sec-
ond, to provide a spares complement for a so-called (m, n)
system. The requirement for this system is that at least m
out of n identical modules must be in operation at any
given time in order for the system to adequately perform
its required function. It should be noted that a (1, n) sys-
tem is equivalent to a simple parallel configuration with
n components.
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For these cases the problem of meeting a cost con-
straint is not difficult to solve. If it is determined that N
spares are needed to achieve a required UTR and enough
moncy is available to buy M spares then the number of
spares that should be bought is the minimum of N and M.
In practice, however, one often has a system configura-
tion containing several types of modules, with the con-
straint placed on the total cost of spares for the entire
system. The problem in this case is to choose the number
of spares for each type of module in such a way that the
system operational availability is maximized within the
cost constraint. An equivalent problem is that of achieving
a prescribed system operational availability for minimum
cost. The method developed in the present report is easily
applied to both problems.

Il. Statement of the Problem

Let k be the number of types of modules in the system.
For each type of module there is a failure rate A;, and a
repair rate, p;, and it is assumed that repair times and

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-20



times between failures are exponentially distributed. (As
explained in Ref. 1, constant repair times yield the same
results to a reasonable degree of approximation.) For
i=1, -,k let n; denote the number of modules of type
iin the system and m; the number that have to be unfailed
in order for the system to perform its intended function
satisfactorily. It is assumed that whenever fewer than the
required minimum m; are operable for one or more of the
module types, the system is down. A further assumption
is that failures and repairs of different modules are sto-
chastically independent. Under these assumptions, the
system UTR is the product of the k UTRs for the module
types. The latter can be calculated by the algorithm in
Ref. 1 that allows for so-called (m, n) systems. Of course,
a single module constitutes a (1,1) system while n iden-
tical modules form an (n, n) system if in series and a (1, n)
system if in parallel.

We define a spares package to be a choice of s,, * - * , s,
the number of spares for the respective types of modules.
If U; (s) is the UTR for the type i module when s spares
are provided, then we have

K
System UTR = U = [] U, (s;) (1)
The value of U; (s) is computed by the procedure given in

Ref. 1. Let ¢; denote the cost for each module of type i.
Then

i
Cost of Package = C = 3 sic; (@)

A spares package with uptime ratio U; and Cost C, is
preferable to one with U, and C., if U, = U,, C, = C., and
at least one of these inequalities is strict. A spares package
will be called efficient if no other package is preferable to
it in the sense just defined. Clearly it is only the efficient
packages one would want to use, since any other package
can be improved upon by reducing cost or improving
UTR or both. The method presented in Section ITI con-
structs spares packages that are efficient under a mild
condition on the U; (s)’s. Note that if U and C are the
UTR and cost of an efficient package, then U is the maxi-
mum possible UTR subject to the cost constraint C, and
C is the minimum possible cost of achieving a UTR>=U.

Ill. A Method for Constructing Efficient
Spares Packages

Define the efficiency of the st* spare for module type i as

R;(s) = log (U (s)/Ui (s — 1))

Ci
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fori=1--- kands=12 - - - . Then we can rewrite
Eq. (1) in the form

8

ogU=3loglU:(0) + 3 S cRils) (3

Note that the first summation is constant, i.e., does not
depend on the choice of the spares package s, = - - , 8.
The total cost of the spares package can be written as

8

C=3 S (4)

t=1 8=1

Then Eq. (3) becomes

1

s

K 8 %
‘logU = constant + 3 3 % R (s) (5)

=1 §=1

Ql

Since the sum of all ¢;’s is C, the sum of the (¢;/C)’s is 1,
so that Eq. (5) expresses 1/C log U as a constant plus a
weighted average of the R; (s)’s. Since we want to maxi-
mize log U, it is plausible that we should proceed induc-
tively as follows:

(1) Choose the first spare for the type i such that R; (1)
> R; (1) for all j=41.

(2) Continue by choosing the next spare to be the one
yielding the largest efficiency among those spares
immediately available. Stop at any time.

To clarify step (2), suppose that r,, - - -, r, spares of
types 1 through k have already been chosen. Then if we
choose type i for the next spare, the efficiency of that
choice is R; (r; + 1). Step (2) calls for choosing i to get the
largest of R; (r; + 1), -, Ry (rx + 1). Then r; is increased
by one (since we now have one more spare) and step (2)
is repeated.

No matter when this process is stopped, the spares
package is efficient, provided the condition in statement
(6a) below is satisfied. In other words, the process pro-
duces a sequence of efficient spares packages, each adding
one more spare to the previous package. Naturally, both
cost and system UTR increase as more spares are added.

A sufficient condition to insure that the method just
described produces efficient spares packages is the follow-
ing “monotonicity condition.”

Foreachi=1, - - - |k R;(s) is decreasing in s

(6a)

129



From the definition of R; (s) it is clear that statement (6a)
reduces to

Foreachi=1, -k U;(s)/U; (s — 1) is decreasing in s
(6b)

Using the algorithm developed in Ref. 1, condition (6b)
was checked for several thousand cases with A’s and p’s
varying over a broad range (it is sufficient to vary the
ratio A/p) and s from 1 up to the value required to make
U, (s) > 0.9999. The cases tested included sparing for a
single module as well as sparing for various (m,n) sys-
tems. Not a single exception to condition (6b) was found.
Finding a mathematical proof of the condition seems to
be very difficult because of the complexity of the recur-
sive equation defining the U; (s)’s.

A proof that the method produces efficient packages
when the monotonicity conditions are met is given in
Section IV.

To illustrate the use of this method, consider the follow-
ing example. We have a system that consists of 24 mod-
ules, one module each of 12 types and 3 modules each of
four types. For each of the latter four types, the modules
are arranged in a (2, 3) configuration. We begin by deter-
mining U, (0) and U; (1) for each type, that is, we calculate
by the method of Ref. 1 the UTR for each type when no
spare is provided -and when 1 spare is provided. From
these calculations we determine R; (1) fori=1, - - - | 16.
Now, if R; (1) is the greatest of these the first spares pack-
age consists of one spare of type j and no spares for each
of the remaining types. To determine the next spares
package (containing two spares) we need only calculate
U; (2) and from this R; (2). We now look at the new set of
R; (s:)’s where, in this step, s; = 0 for i-~f and s; = 1. If
R;; (s) is the greatest of these, the second spares package
consists of one spare for type §, one spare for type k, and
no spares for the remaining types. We continue in this
fashion until a desired stopping point is reached. Each
successive spares package generated in this way will con-
tain one spare more than the previous one and will be effi-
cient in the sense defined above. Since the cost of each
spares package and the system UTR achieved are easily
computed as the process proceeds, a cost vs UTR tradeoff
can be made to determine when to stop, or one can con-
tinue unti! a specified UTR is achieved or a cost constraint
would be exceeded by continuing.

The procedure was applied to the above described sys-
tem for specific sets of \’s and unit costs. The repair time
was assumed to be 336 hours for all of the types of mod-
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ules. The upper graph in Fig. 1 labeled € =0 is a plot
from step 13 on of the UTRs achieved by the above pro-
cedure as a function of the costs incurred. Table 1 lists
some of the numeral results. The entries in column 2
show the successive decisions on which type of spare
should be added to the previous spares package in order
to get the current one. In other words, if k is the entry in
the j* row of column 2, add a spare of type k module to
the (j — 1)** spares package to obtain the jt* spares pack-
age (containing j spares). The row denoted by “Final
spares package” shows the contents of the last spares
package (in this case the 37th). The k'* entry in this row
denotes the number of spares for the k** type of module
(the total number of spares is 37). The entries in this row
and those in column 2 enable one to determine the con-
tents of any of the previous spares packages. For example,
to obtain the 34th spares package, subtract from the en-
tries in the final spares package one spare each for the
fourth, second, and tenth type of module, obtaining the
spares package 1,1,2,1,2,2,2,2,2,2,2 3,3,3,3,3 with a
cost of 1046 and a system UTR of 0.9936.

Each entry in column 4 of Table 1 is the inverse of the
down time ratio (DTR), (DTR = 1 — UTR) at each step.
These numbers are given because they have an inter-
esting property. Figure 2 is a plot on log paper of 1/DTR
versus cost starting with step 11, which shows a cost of
348 and UTR = 0.8647. In this range, it can be seen that
the function is closely approximated by the straight line
drawn on the graph by eye. This means that log (1/DTR)/
cost is very nearly constant in the range of practical inter-
est to a potential user of the procedure. If we denote this
constant by b, we have

log (1/DTR)/C = b
resulting in

¢ = DTR = 1 — UTR

so that a knowledge of b enables us to predict very closely
what the UTR will be for a given cost using this method
of sparing. Columm 5 in the table gives the values of
log (1/DTR)/C for each step and confirm the results
shown in Fig. 2. If we think of 1/DTR as the average num-
ber of random inspections (spread out over time) required
to first find the system down, then we have the rule-
of-thumb: this average number of inspections grows
exponentially as a function of the cost of spares. The expo-
nential growth rate parameter, b, is characteristic of the
system configuration, the failure rates, and the repair rates.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-20



IV. The Value/Cost Lemma

By taking logarithms in Eq. (1) it is easily seen that the
problem of selecting spares efficiently fits the following
general formulation, which is applicable in many contexts.

Let S be a set (e.g., all possible spares) whose members
x each have a value v (x) and a cost ¢ (x). It is desired to
select subsets R of S whose total value

V(R)= X v(x)

reER

and cost

CR)= X c(x)

TER

are efficient in the sense that neither can be improved
without hurting the other. It is easy to see that a sufficient
condition for R to be efficient is that there exists a d > 0
such that V(R) — dC (R)=V (R’) —dC (R’) forall R CS.
(If, for example, there were an R’ such that V (R’) > V (R)
while C (R’) = C (R), then V (R) — dC (R) < V (R’)
- dC (R’), contrary to the condition.)

To find such an R for a given d > 0, note that

V(R) ~dC(R) = 3 [o(x) — dc(x)]

TER

= Z [o(x) — de(x)]

z:v(2)-dc(z)=0

and observe the upper bound on the right is attained if
R = Rq = {xjv (x) =dc (x)}. Thus, for all d > 0, R, satis-
fies the sufficient condition and we have the Value/Cost
Lemma: R, is efficient.

A similar result describing efficient performance of sta-
tistical hypothesis tests is called the Neyman-Pearson
Lemma. The same mathematics has been used in prob-
lems close to the present one (Ref. 2) and is related to the
more general theory of nonlinear programming (Ref. 3).

To apply this result to the sparing problem, identify the
members of S as x;;’s where

xij =" spare of typed; i=1, - -k =12 - -

In the notation of the previous section, if s; = 3, say, then
we understand that x;,, x;., and x;; have been selected, but
not x;4, x;5, etc. We define

¢ (x;;) = ¢; = unit cost for spares of type i

v (i,f) = log U (j) —log U; (j — 1)
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Thus if s;, - - -, s, spares of the various types are selected,
the total value is

5

[log U; (j) — log U; (j — 1)]

j=1

k
V=23

The sum over f telescopes and we get

V=3 [logUi (s — log U (0)]

i=1

Thus V is the log of system UTR minus a constant not
depending on the s;’s, so that the comparison between
system UTRs for different packages is equivalent to a
comparison of their values, V = 3 v (x;;). Therefore a
spares package that selects those spares x;; in R, (for
a d > 0) is efficient in the sense of Section II.

To see that the method of Section III produces Rg’s
under the monotonicity condition (6a), note that wherever
we stop, the efficiencies R; (s) of the spares selected are
all greater than or equal to the efficiencies of the spares
not selected. Hence, there is some d > 0 that is a lower
bound on the efficiency of selected spares and a strict
upper bound on the efficiency of spares not selected. Since

v (xis)

i

Ri (S) -

R; (s) is = or < d according as v (x;;) — dc; is = or < 0;
hence the members of R, are precisely the spares selected
by the method. Actually, for a spares package of this kind
costing C, say, to be efficient, it is sufficient that for every i
the monotonicity condition holds for values of s = C/c;,
since this is as many spares of type i as can be bought for
C or less.

V. The Cost of Misestimating Failure Rates

Since the results obtained from our sparing procedure
depend upon the estimated failure rates of the various
types of modules, a decrease in efficiency will result when
the procedure is used with a set of estimated A’s that differ
substantially from the true X’s.

In order to see the effect of this kind of error, we applied
the procedure to the system described in Section I1I under
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the assumption that the true A’s were as given but that the
estimated A;’s were given by

(1+ €A, =135 ---,15

N/ +€), i=2,4,6,---,16

for e = 0.5 and € = 1.0.

Thus the contents of each spares package was deter-
mined by using the A;’s while the UTR was computed
using the true X’s. The graphs in Fig. 1 labeled € = 0.5
and € = 1.0 are plots of UTR vs cost for the two examples
of misestimated failure rates.

It is readily seen that for a given cost one does not
achieve as high a UTR when the estimated failure rates
used to generate the spares package differ from the true
ones.

Looking at it the other way around, the cost of achiev-
ing a given UTR is increased when the failure rates are
in error. In the example depicted in Fig. 1, the percentage
increase in the cost for fixed UTR’s is about 10% when

€ = 0.5 and about 20 to 25% when € = 1. Note that in the
latter case all the failure rates are in error by a factor of
two, half of them too high and half too low. If failure
rates are in error by random factors less than or equal to
two, the degradation in efficiency will be less.

VI. Applications

The principal applications envisaged for the method
developed in this report are to the problem of initial
spares provisioning and to improving the operational
availability of present subsystems that are relatively un-
reliable. In the former case, only crude estimates of failure
rates are available, but the analysis in Section V indicates
that the method still yields useful results.

For improving operational availability of existing sys-
tems or subsystems, more accurate judgments are possi-
ble by utilizing reliability histories to estimate failure
rates. Once these rates are determined, the efliciencies of
additional spares of all types can be calculated and any
improved level of UTR can be reached efficiently by pur-
chasing additional spares with the greatest efficiencies.
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Table 1. Results obtained by efficient sparing

Type of Parameters
Step Cost C 1/DTR log (1/DTR)/C UTR
spare Type A/10-8 Cost/unit

1 14 18 1.64 0.02757 0.3911 1 31.25 32
2 10 40 1.76 0.01406 0.4301 ) 62.50 30
3 15 86 1.97 0.00789 0.4925 3 93.75 34
4 16 102 2.07 0.00711 0.5158 4 125.00 28
5 13 146 2.39 0.00596 0.5814 5 156.25 36
6 11 188 2.81 0.00550 0.6447 6 187.50 26
7 6 214 3.17 0.00538 0.6840 7 218.75 38
8 9 254 3.93 0.00539 0.7456 8 250.00 24
9 7 292 4.96 0.00548 0.7984 9 281.25 40

10 12 312 5.64 0.00554 0.8226 10 312.50 22

11 5 348 7.39 0.00575 0.8647 11 34375 42

12 3 382 9.92 0.00581 0.8915 12 375.00 20

13 2 412 11.11 0.00584 0.9100 13 406.25 44

14 8 436 13.18 0.00591 0.9241 14 437.50 18

15 14 454 1479 0.00593 0.9324 15 460.75 46

16 16 470 16,53 0.00597 0.9395 16 500.00 16

17 1 502 19.73 0.00594 0.9493

18 15 548 24.36 0.00583 0.9590

19 10 570 27.45 0.00581 0.9636

20 12 590 30.47 0.00579 0.9672 Final spares package:

21 13 634 39.60 0.00580 0.9748 1,2,2,2,2,2,2223,23,3,3,3,3

22 4 662 47.94 0.00585 0.9791

23 11 704 65.66 0.00594 0.9848

24 9 744 88.18 0.00602 0.9887

25 6 770 104.90 0.00604 0.9905

26 7 808 140.80 0.00612 0.9929

27 16 824 163.04 0.00618 0.9939

28 8 848 206.45 0.00629 0.9952

29 5 884 280.63 0.00638 0.9964

30 14 902 320.04 0.00640 0.9969

31 12 922 361.50 0.00639 0.9972

32 3 956 436.37 0.00636 0.9977

33 15 1002 568.77 0.00633 0.9982

34 13 1046 713.52 0.00628 0.9936

35 10 1068 811.32 0.00627 0.9988

36 2 1098 981.96 0.00627 0.9990

37 4 1126 1206.67 0.00630 0.9992

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-20

133



1.00 I

1000 —

UTR
1/DTR

0.95

0.94 —

0,93 —

1 ] ] ] I |
0 200 400 600 800 1000 1200

COsT

0.91 { | L | I
0 200 400 600 800 1000 1200

COsT

Fig. 2. 1/DTR vs cost for efficient sparing
Fig. 1. UTR vs cost for efficient sparing with ¢ = 0, 0.5, 1.0
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